
Migrating your code from Tesla Fermi to Tesla
K20X, with examples from the QUDA Lattice

QCD library

Microway, Inc.
Justin Foley, PhD

October 26, 2013

1

Introduction

Over the last seven years, general-purpose GPU computing has evolved from
being something of a curiosity into an extremely popular and immensely
powerful HPC platform. NVIDIA has been a driving force in this process
through the development of GPU-based hardware for general computation
and the parallel development of the CUDA programming model.

Tesla-architecture GPUs (compute capability 1.x) were the first NVIDIA
processors to support general-purpose computing using CUDA. This first
generation was superseded by the Fermi generation of GPUs (compute capa-
bility 2.x), which debuted in 2010. Notable differences between Fermi hard-
ware and the previous generation of processors include much higher double-
precision performance on Fermi (support for double precision was introduced
in compute 1.3 devices), the addition of a configurable L1 cache on each SM
and an L2 cache shared between SMs, and support for concurrent kernel ex-
ecution on Fermi. The rollout of Kepler in 2012 marked another significant
milestone in the evolution of GPGPU computing.

In this document, we discuss a number of new features introduced in
Kepler, and highlight differences in performance and functionality between
Kepler and Fermi. We focus on the Kepler GK110 architecture (compute
capability 3.5) [1], which is designed for high-performance double-precision
calculations. At the time of writing, Kepler GK110 represents the state of
the art in GPGPU hardware, and it forms the basis for NVIDIA’s Tesla K20
and K20X accelerators. Topics covered include

Copyright Microway, Inc. 2013 – www.microway.com 1

www.microway.com

• The impact of changes to the number of registers

• Hyper-Q

• Dynamic Parallelism

• Bindless Textures

• Shared-Memory Bandwidth

Some of these topics, such as bindless textures and shared-memory band-
width, are also relevant for the Kepler GK104 architecture (compute capabil-
ity 3.0). However, two of the most significant new Kepler features - Hyper-Q
and Dynamic Parallelism - are only supported on GK110.

A number of examples in this report are taken from the QUDA library [2],
which is an open-source library for performing Lattice QCD1 calculations on
NVIDIA GPUs. QUDA, which is written in CUDA C++, is under ongoing
development, and it takes advantage of a number of features introduced with
Kepler, such as support for bindless textures.

Fermi to Kepler GK110 at a glance

Table 1 lists selected features of the Fermi GF110 and GF114 architectures
(compute 2.0 and 2.1 respectively) and Kepler GK110. Major differences
include an increase in the number of streaming processors per SM from 48 on
Fermi GF114 (32 on Fermi GF110) to 192 on Kepler. This increase is coupled
with a reduction in clock speed, a combination that helps to achieve both
higher performance and greater power efficiencies in the new architecture.
The significant differences between the Kepler streaming multiprocessor and
previous SMs have prompted NVIDIA to relabel Kepler’s multiprocessor an
SMX, to denote a next-generation SM.

The number of threads per warp on Kepler remains unchanged from Fermi
at 32. However, the maximum number of warps per SM has gone from 48
on Fermi to 64 on Kepler. Furthermore, the number of thread blocks that
can execute concurrently on a single SM has doubled from 8 on Fermi to 16
on Kepler. The combination of 4 warp schedulers and 8 instruction dispatch

1Lattice QCD is a computational approach to the theory of the strong nuclear force
and a significant HPC application

Copyright Microway, Inc. 2013 – www.microway.com 2

www.microway.com

units on Kepler means that two independent instructions can be issued to
each of 4 warps per clock cycle. On Fermi, either 16KB or 48KB of a 64KB
segment of on-chip memory can be used as an L1 cache, with the remainder
reserved for shared memory. On Kepler, in addition to these configurations,
this on-chip memory can be divided fifty-fifty between L1 cache and shared
memory.

Other important changes include a doubling of the number of 32-bit reg-
isters per SM on Kepler, and a significant increase in the maximum number
of registers per thread from 63 on Fermi and Kepler GK104 to 255 on Kepler
GK110. Performance implications of the increase in the number of registers
are discussed below.

The Tesla K20 accelerator has 13 active SMX units, containing a total
of 2,496 SPs, and it delivers a reported peak double-precision performance
of 1.17 Tflops. The higher-end Tesla K20X consists of 14 functional SMX
units, containing 2,688 SPs, and achieves 1.31 Tflops peak double-precision
performance [3]. In contrast, the Tesla M2090, which uses the compute 2.0
GF110 GPU and has 512 SPs in total, gives a reported peak double-precision
performance of 665 Gflops [4].

Fermi GF114 (GF110) Kepler GK110
SPs per SM 48 (32) 192
Threads per SM 1536 2048
Thread blocks per SM 8 16
Warp schedulers per SM 2 4
Dispatch Units per SM 4(2) 8
Shared Memory/L1 cache 16/48KB 16/32/48KB
32-bit Registers per SM 32K 64K
Registers per thread 63 255

Table 1: A comparison of some of the features of Fermi GF114 and GF110 ar-
chitectures (compute capability 2.1 and 2.0 respectively) and Kepler GK110.

Changes to the number of registers

The increase in the number of registers per SM from 32,768 on Fermi to
65,536 on Kepler may enable applications to achieve high thread-level paral-

Copyright Microway, Inc. 2013 – www.microway.com 3

www.microway.com

lelism on Kepler hardware. For example, an application using 48 registers per
thread achieves up to 42% occupancy on Fermi, but up to 63% occupancy on
Kepler. However, maximizing occupancy does not necessarily maximize GPU
utilization, and high performance can be achieved at low occupancy through
instruction-level parallelism (ILP); i.e., latencies can be hidden by having
each thread execute multiple independent instructions. In fact, in some ap-
plications, maximum performance can only be achieved through ILP [5], and
on Kepler, some degree of ILP is required in order to approach theoretical
peak performance. Applications running on Kepler GK110 can take advan-
tage of the larger number of registers available to each thread to increase
instruction level parallelism.

The increase in the number of registers in GK110 has resulted in very
substantial performance gains in many critical QUDA routines. Most Lattice
QCD applications are limited by global-memory bandwidth. The low number
of registers per thread on Fermi can result in significant register spilling,
adding to global-memory traffic, and severely impacting the performance of
double-precision floating-point applications in particular. NVIDIA’s GK110
white paper cites one particular QUDA kernel (the wilson dslash kernel) that
achieves a 5.3x speedup over Fermi on Kepler GK110, most of which can be
attributed to a reduction in register spilling. Another core QUDA routine
that suffers from heavy register spilling on Fermi, the double-precision HISQ
fermion-force calculation, exhibits a 3x speedup over Fermi on GK110.

Hyper-Q

The CUDA programming model supports concurrency on multiple levels. In
addition to thread-based parallelism, CUDA streams enable multiple kernels
to execute concurrently on a single device and allow kernel execution to over-
lap with the transfer of data between host and device. On Fermi-architecture
GPUs, up to 16 kernels can execute concurrently on a single device, and ker-
nel execution can overlap with a load from and write to host memory. On
Fermi, this concurrency is supported by three hardware queues. Two of these
are copy engine queues, dedicated to the transfer of data between host and
device. One of the two copy engines deals with data transfers from the host,
and the other handles transfers to the host exclusively. The remaining queue,
the compute engine queue, is used to dispatch kernels to hardware. Ideally,
independent kernels in separate CUDA streams should execute concurrently

Copyright Microway, Inc. 2013 – www.microway.com 4

www.microway.com

provided the required compute resources are available on the device. In prac-
tice, however, it may be difficult to achieve maximum concurrency on Fermi
devices because there is just one compute engine queue. On Fermi, the rules
governing kernel dispatch include the following:

• Kernels are dispatched to hardware in the order in which they are issued
to the queue.

• A kernel in a particular stream is only dispatched after the preceding
kernels in that stream have completed.

• A kernel can only begin execution after all kernels that precede it in
the queue have been dispatched irrespective of CUDA streams.

Hence, if a CUDA program involving multiple kernels and utilizing two
streams, with no explicit synchronization between streams, is structured such
that all kernels in stream 0 are issued before the kernels in stream 1, the first
kernel in stream 1 can only begin execution after the last kernel in stream 0
has been dispatched, and this can only happen after all preceding kernels in
stream 0 have completed. This issue pattern, where all kernels in a stream
are issued before moving on to the next stream, is known as depth-first issue,
and it should be avoided on Fermi GPUs.

The dependence of the kernels in one stream on kernels performing in-
dependent computations in another stream is often referred to as a false
dependency. In principle, code can be structured to eliminate false depen-
dencies and maximize concurrency, but this becomes increasingly difficult for
applications that utilize more streams involving kernels that run for different
durations.

The Hyper-Q technology introduced in compute 3.5 devices eliminates
such false dependencies. Kepler GK110 supports up to 32 concurrent streams
compared to 16 on Fermi, and unlike Fermi, kernels in different streams are
assigned to separate hardware queues. Thus, returning to the example above,
with Hyper-Q the dispatch of kernels in stream 1 will not depend on the
completion of kernels in stream 0 provided sufficient compute resources are
available for kernels in both streams to execute concurrently.

Hyper-Q technology also enables multiple CPU processes, such as differ-
ent MPI ranks, to simultaneously launch work onto a shared GPU. In the
CUDA 5.5 release, this functionality is enabled through the Multi-Process
Service (MPS) feature, which was previously referred to as CUDA Proxy in
CUDA 5.0.

Copyright Microway, Inc. 2013 – www.microway.com 5

www.microway.com

Stream 1

Issue Order

Kernel Execution

Stream 0 Stream 1 Stream 0 Stream 1

Stream 0

Time

Fermi Kepler GK110

Figure 1: Kernel issue order and inter-stream dependencies. On the left,
the kernels in stream 0 are issued before the kernels in stream 1. In Fermi
and Kepler GK104, the use of a single hardware queue for all streams results
in false dependencies. Thus, in this example, kernels in stream 1 can only
execute after the kernels in stream 0 have been dispatched. The Hyper-Q
feature in Kepler GK110 eliminates such dependencies by using a separate
queue for each stream.

Copyright Microway, Inc. 2013 – www.microway.com 6

www.microway.com

Dynamic parallelism

One of the best-known new features in Kepler GK110 is support for dynamic
parallelism. This is the ability to launch kernels from within other kernels,
whereas previously kernels could only be launched from the CPU. In certain
applications, dynamic parallelism can eliminate much of the communication
between host and device, resulting in an increase in concurrency and GPU
utilization.

Overview

On compute 3.5 devices, any thread can create streams and launch kernels.
A kernel launched from a parent thread executes on a child grid of threads.
CUDA streams created on the device are accessible from the thread block of
the parent thread and all threads within a block launch to the same default
stream. However, streams created in one thread block are not accessible from
other thread blocks in the parent grid. Similarly, kernels launched from a
thread are only visible to other threads in the same thread block. As on
the host, kernel launches on the device are asynchronous with respect to the
parent thread.

To illustrate these ideas, consider the sample CUDA C++ code shown
in Fig. 2. This code is similar to a saxpy routine to evaluate y = ax + y,
where x and y are vectors and a is a scalar, except in this case the vector
x is also modified: x → ax. Using dynamic parallelism, this trivial exam-
ple can be implemented using a nested kernel. In Fig. 2, the child kernel
implements x → ax, and the updated vector x is subsequently used in the
parent kernel. In this example, thread 0 in each block launches a child kernel.
Then, since kernel launches are asynchronous, thread 0 calls cudaDeviceSyn-
chronize to force the child kernel to execute before it proceeds. The call to

syncthreads ensures that all threads in the block are synchronized with
thread 0. The synchronization points in the parent kernel are essential, and
the removal of either cudaDeviceSynchronize or syncthreads would result
in a race condition in this example.

Dynamic parallelism in action

Dynamic parallelism can greatly improve the performance and simplify the
implementation of data-dependent and recursive algorithms on GPUs. The

Copyright Microway, Inc. 2013 – www.microway.com 7

www.microway.com

__global__
void childKernel(float *x, float a, int offset){

 int id = offset + blockIdx.x*blockDim.x + threadIdx.x;
 x[id] = a*x[id];

}

__global__
void parentKernel(float *y, float *x, float a){

 int id = blockIdx.x*blockDim.x + threadIdx.x;
 if(threadIdx.x==0){

 childKernel<<<1,blockDim.x>>>(x, a, blockIdx.x*blockDim.x);
 cudaDeviceSynchronize(); // ensure childKernel has completed

 }
 __syncthreads(); // synchronize threads within block

 y[id] = x[id] + y[id];
}

Figure 2: Simple example of a nested kernel.

implementation of the quicksort algorithm using dynamic parallelism has
been described in numerous NVIDIA presentations (see [6], for example).
The CUDA 5.5 toolkit contains a number of sample codes that use dynamic
parallelism, including quicksort and an LU decomposition code.

DiMarco and Taufer [7] have studied the impact of dynamic parallelism on
clustering algorithms. These are heuristic algorithms used to partition data
sets of N points into k (k < N) disjoint clusters based on some similarity
criterion.The authors consider two different algorithms. One is the k-means
algorithm, which is an iterative method that repeatedly reassigns data points
to different clusters until a convergence criterion is satisfied. The second al-
gorithm is a divisive clustering algorithm that initially assigns all the data
points to a single cluster, which is divided into smaller clusters recursively.
Clearly, the divisive algorithm is likely to benefit most from dynamic paral-
lelism. In fact, the authors observe a slight decrease in performance when
they apply dynamic parallelism to the k-means algorithm. On the other
hand, dynamic parallelism results in performance gains ranging from 1.78x
to 3.03x in tests of the divisive clustering algorithm performed on different
data sets.

Copyright Microway, Inc. 2013 – www.microway.com 8

www.microway.com

New texture features

Bindless textures

Designed for graphics applications specifically, textures are used more gen-
erally to maximize memory bandwidth in applications where global-memory
reads do not satisfy coherency constraints but nonetheless exhibit a degree
of spatial locality. Prior to compute capability 3.0, textures could only be
accessed via the texture reference API. However, this API is subject to a
number of limitations. For example, texture references have file scope and
cannot be passed as function arguments. A texture reference declaration has
the form:

texture〈Type, Dim, ReadMode〉 texRef;

where Type denotes the return type of the texture, Dim is the dimension
of the texture, and ReadMode can take the values cudaReadModeElement-
Type and cudaReadModeNormalizedFloat. The return type, dimension, and
read mode attributes of a texture reference are thus fixed at compile time. At
runtime, the texture reference must be bound to device memory with a call
to cudaBindTexture or similar function before it can be used in a kernel. On
Fermi, due to hardware restrictions, no more than 128 texture references can
be bound to a kernel at any one time. Texture references can be unbound
by calling cudaUnbindTexture.

The texture reference API is also supported on compute 3.x devices. How-
ever, on Kepler, the new texture object API offers all the functionality of
texture references with better performance. Unlike texture references, tex-
ture objects are standard C++ objects that are created at runtime. The
number of texture objects is not subject to the hardware restrictions that
apply to texture references, and texture objects do not need to be bound
and unbound. Hence, the texture-object feature is alternatively referred to
as bindless textures.

Mike Clark of NVIDIA has described the performance benefits that bind-
less textures bring to QUDA in a ParallelForall blog post [9]. Clark highlights
the fact that, in addition to the cost of binding and unbinding texture refer-
ences (approximately 1 microsecond and 0.5 microseconds respectively), each
texture reference that is bound to a kernel generates additional kernel over-
head and that the additional overhead is incurred regardless of whether the

Copyright Microway, Inc. 2013 – www.microway.com 9

www.microway.com

// kernel to copy an array of floating-point numbers
// using a texture reference.
// texRef is of type texture<float,1,cudaReadModeElementType>
__global__
void copyTexRef(float* y){
 int idx = blockIdx.x*blockDim.x + threadIdx.x;
 y[idx] = tex1Dfetch(texRef,idx);
}

// kernel to copy an array of floating-point numbers
// using a texture object.
__global__
void copyTexObject(float* y, cudaTextureObject_t texObj){
 int idx = blockIdx.x*blockDim.x + threadIdx.x;
 y[idx] = tex1Dfetch<float>(texObj,idx);
}

Figure 3: Sample copy kernels using texture references and texture objects.

texture is actually used in the kernel. Replacing texture references with tex-
ture objects eliminates this overhead. To demonstrate this, we implemented
two simple copy kernels that use textures, one utilizing texture references
and one with texture objects. These are shown in Fig. 3. Note that when
using texture objects, the function tex1Dfetch is templated on the return
type (in this case, float).

Fig. 4 shows the results of benchmark runs using these kernels on a Tesla
K20c. Execution times are averaged over ten million kernel invocations.
Cases 1 and 2 use the copyTexRef kernel from Fig. 3. In case 2, a second,
redundant texture reference is bound before the kernel call. We stress that
the times shown are kernel execution times only and that these figures do
not include the time spent binding and unbinding textures. Note that the
kernel that uses texture objects (case 3) is 0.4 microseconds faster than the
kernel that uses a single texture reference (case 1), and that binding a second
texture reference further increases the execution time for copyTexRef by 0.3
microseconds.

Although the differences in kernel overhead might appear small, switching
to texture objects has substantially improved strong scaling in multi-GPU
linear solvers in the QUDA library (Fig. 5).

Copyright Microway, Inc. 2013 – www.microway.com 10

www.microway.com

elements copied: 256
(gridSize,blockSize): (1,256)
Average Times :
Case 1 (Texture Reference) : 4.85967 microseconds
Case 2 (Redundant Texture Reference) : 5.16451 microseconds
Case 3 (Texture Object) : 4.44285 microseconds

Figure 4: Benchmark results for the copy kernels in Fig. 3 obtained on a
Tesla K20c. The kernel that uses the texture object API achieves the best
performance. Using a single texture reference (Case 1) incurs an additional
0.4 microsecond overhead, and binding a second, redundant reference to the
copyTexRef kernel further increases the execution time by 0.3 microseconds.

0.5 1 2 4 8 16

N
GPU

0

500

1000

1500

2000

2500

3000

G
F

L
O

P
S

Texture References
Bindless Textures

Figure 5: Strong scaling of a linear solver in the QUDA library using texture
references and texture objects. In this example, switching to texture objects
substantially improves performance on larger numbers of GPUs.

Copyright Microway, Inc. 2013 – www.microway.com 11

www.microway.com

The ldg intrinsic

Kepler GK110 also enables applications to utilize texture cache when reading
from global memory without actually using the texture reference or texture
object APIs. This is done using the ldg function, which takes as an argu-
ment an address in global memory and returns the value contained at that
address. The nvcc compiler will also attempt to use texture cache even when

ldg is not explicitly included in the source code. To allow this to happen,
pointers to global memory must be marked with const restrict qualifiers.
Note that although extremely simple to use, the ldg intrinsic lacks most
of the functionality of the texture APIs. Furthermore, when using textures,
address calculations are done in hardware, while the addresses of data that
are read using the ldg function are calculated in the kernel.

Shared-memory bandwidth

On Fermi-architecture GPUs, on-chip shared memory is divided into 32 4-
byte banks, with successive 4-byte words assigned to successive banks. The
bank index is given by the word address modulo 32, or the 5 least significant
bits of the address. Bank conflicts occur when multiple threads in a warp
access different words in the same bank, in which case, the accesses are
serialized. Thus, for example, the kernel segment in Fig. 6 will result in
a two-way bank conflict on Fermi, where threads in the first and second
half-warps access the same banks

On Kepler, the number of shared-memory banks remains at 32, but the
bank width has doubled to 8 bytes, with a corresponding 2x increase in
shared-memory bandwidth. In addition, unlike Fermi, Kepler supports two
shared-memory access modes, which we describe below. To avoid confusion,
in the following discussion, we refer to 8-byte words and 4-byte words as
words and half-words, respectively.

In 4-byte mode, successive half-words are assigned to successive shared-
memory banks. Thus, when a warp of threads writes an array of doubles to
shared memory, for example, the first half-warp of threads writes one half-
word to each bank and the second half-warp writes a second half-word to
each bank. Multiple accesses to the same shared-memory bank by different
threads in a warp do not generate bank conflicts provided they are restricted
to a single 256-byte aligned segment of shared memory (this implies that

Copyright Microway, Inc. 2013 – www.microway.com 12

www.microway.com

__global__

void smemStrideKernel(float* gin, ...)
{

 extern __shared__ float sdata[];
 int tid = threadIdx.x;

 int id = tid + blockIdx.x*blockDim.x;

 sdata[2*tid] = gin[id];
 ...

Figure 6: A shared-memory access pattern that generates a two-way bank
conflict on Fermi, but not on Kepler.

the strided access pattern in Fig. 6 is conflict free on Kepler). Conversely,
multiple accesses to the same shared-memory bank involving different 256-
byte segments will result in bank conflicts. For example, on Kepler, the
shared-memory write in the code segment in Fig. 7 will suffer from a bank
conflict whenever OFFSET assumes a non-zero value that is not an integer
multiple of 32. Note that, in the absence of bank conflicts, the maximum
shared-memory throughput of 8 bytes per bank per clock cycle can actually
be achieved in four-byte mode.

As the name suggests, in 8-byte access mode, successive 8-byte words
are assigned to successive banks. In this mode, the double-precision shared-
memory write in Fig. 7 does not suffer from bank conflicts regardless of the
value of OFFSET.

To ensure compatibility with applications developed on Fermi, codes built
to run on Kepler default to 4-byte shared-memory mode. However, the access
mode can be set explicitly in the code by calling cudaDeviceSharedMem-
Config with cudaSharedMemBankSizeEightByte or cudaSharedMemBank-
SizeFourByte as an argument.

The increase in shared-memory bank width can result in immediate sig-
nificant performance gains in applications that use 8-byte data types, such
as codes performing double-precision floating-point arithmetic. NVIDIA’s
ParallelForall blog contains two posts describing the implementation of a
finite-difference method in CUDA C++ that makes extensive use of shared
memory [8]. The method is implemented on a three-dimensional grid with

Copyright Microway, Inc. 2013 – www.microway.com 13

www.microway.com

__global__
void smemOffsetKernel(double* gin, ...)
{

 extern __shared__ double sdata[];
 int tid = threadIdx.x;

 int id = tid + blockIdx.x*blockDim.x;

 sdata[tid+OFFSET] = gin[id];
 ...

Figure 7: On Kepler, in 4-byte shared-memory access mode, the code sample
above results in a two-way bank conflict for non-zero values of OFFSET that
are not integer multiples of 32. Switching to 8-byte access mode eliminates
this conflict.

directions labeled x,y, and z. The first blog post concerns the implementation
of a derivative in the x direction using a 9-point stencil. The example is imple-
mented in single-precision floating-point arithmetic, but modifying the code
to use double-precision arithmetic is trivial. If we run the double-precision
code with a 64×4 shared-memory tile using the default 4-byte access mode
on a K20c, an average kernel execution time of 39 microseconds is reported.
Switching to 8-byte mode reduces the measured kernel execution time to 37.2
microseconds, which corresponds to a performance gain of almost 5%.

As discussed above, applications that use 4-byte data types may also
benefit from a reduction in bank conflicts on Kepler. However, it should be
clear that shared-memory accesses that involve each thread in a warp reading
or writing a single 4-byte word, such as an int or float, can achieve no more
than half the available bandwidth on Kepler. In such cases, modifying the
code to use int2 or float2 types instead can improve performance.

Additional features

GPUDirect RDMA

GPUDirect RDMA is the latest in the GPUDirect series of technologies that
are designed to accelerate data transfer between GPUs. This latest tech-
nology enables direct data transfer between GPUs over Infiniband networks,

Copyright Microway, Inc. 2013 – www.microway.com 14

www.microway.com

completely bypassing host memory. The alpha release of the Mellanox OFED
driver supporting GPUDirect RDMA became available in Summer 2013, with
the general release scheduled for the last quarter of 2013. Benchmarks of
the new technology using MVAPICH2 show a 3x reduction in short-message
latencies along with significant increases in MPI bandwidth. A series of pre-
sentations on GPUDirect RDMA is contained in the GTCExpress webinar
‘Accelerating High Performance Computing with GPUDirect RDMA’ [10].

Shuffle instructions

Another new feature of Kepler is a family of shuffle instructions. These allow
threads within a warp to exchange data residing in registers without having
to go through shared memory. At the present time, four shuffle functions are
supported and these are overloaded for 4-byte integer and floating-point vari-
ables. Shuffle operations are faster than the corresponding shared-memory
operations and the use of shuffle instructions may also indirectly improve
performance by freeing up shared memory.

Atomic functions

The performance of atomic operations on global memory has improved signif-
icantly on Kepler GK110. This may allow atomics to be used more freely in
software and facilitate the more rapid development of codes that achieve an
acceptable base level of performance. GK110 also extends the set of native
atomic functions that can operate on 64-bit integer values to include atomic-
Max and atomicMin, as well as the bitwise functions atomicAnd, atomicOr,
and atomicXor. Previously, these functions were restricted to 32-bit integer
types.

Conclusion

NVIDIA’s Kepler architecture differs significantly from the previous-generation
Fermi hardware, and Kepler supports a number of features not available on
Fermi-class GPUs. The new features discussed here include Hyper-Q, dy-
namic parallelism, bindless textures, and changes to shared memory. Al-
though applications developed on Fermi should perform well on Kepler hard-
ware without modification, minor changes, such as switching from texture
references to texture objects, or modifying code to fully utilize the greater

Copyright Microway, Inc. 2013 – www.microway.com 15

www.microway.com

shared-memory bandwidth on Kepler, can result in noticable performance
gains. Furthermore, support for dynamic parallelism drastically simplifies
the implementation and increases the performance of many algorithms on
Kepler. A firm understanding of the differences between Fermi and Kepler is
therefore essential to ensure that applications achieve maximum performance
on the latest generation of NVIDIA accelerators.

Acknowledgements

The author is grateful for many useful discussions with M. Clark.

References

[1] NVIDIA Kepler GK110 Architecture White Paper
http://www.nvidia.com/content/PDF/kepler/

NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf

[2] QUDA: A library for QCD on GPUs
http://lattice.github.io/quda/

[3] http://www.nvidia.com/object/tesla-servers.html

[4] Tesla M-Class GPU Computing Modules - Accelerating Science
http://www.nvidia.com/docs/IO/105880/

DS-Tesla-M-Class-Aug11.pdf

[5] V. Volkov. Better Performance at Lower Occupancy. GTC 2010.

[6] S. Jones. How Tesla K20 speeds quicksort, a familiar comp-sci code
http://blogs.nvidia.com/blog/2012/09/12/

how-tesla-k20-speeds-up-quicksort-a-familiar-comp-sci-code

[7] J. DiMarco and M. Taufer. Performance Impact of Dynamic Parallelism
on Different Clustering Algorithms and the New GPU Architecture. Pro-
ceedings of the DSS11 SPIE Defense, Security, and Sensing Symposium
(2013).

Copyright Microway, Inc. 2013 – www.microway.com 16

http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://lattice.github.io/quda/
http://www.nvidia.com/object/tesla-servers.html
http://www.nvidia.com/docs/IO/105880/DS-Tesla-M-Class-Aug11.pdf
http://www.nvidia.com/docs/IO/105880/DS-Tesla-M-Class-Aug11.pdf
http://blogs.nvidia.com/blog/2012/09/12/how-tesla-k20-speeds-up-quicksort-a-familiar-comp-sci-code
http://blogs.nvidia.com/blog/2012/09/12/how-tesla-k20-speeds-up-quicksort-a-familiar-comp-sci-code
www.microway.com

[8] M. Harris. Finite Difference Methods in CUDA C/C++
https://developer.nvidia.com/content/

finite-difference-methods-cuda-cc-part-1

[9] M. Clark. CUDA Pro Tip: Kepler Texture Objects Improve Performance
and Flexibility
https://developer.nvidia.com/content/

cuda-pro-tip-kepler-texture-objects-improve-performance-and-flexibility

[10] Accelerating High Performance Computing with GPUDirect RDMA
http://on-demand.gputechconf.com/gtc/2013/webinar/

gtc-express-gpudirect-rdma.pdf

Copyright Microway, Inc. 2013 – www.microway.com 17

https://developer.nvidia.com/content/finite-difference-methods-cuda-cc-part-1
https://developer.nvidia.com/content/finite-difference-methods-cuda-cc-part-1
https://developer.nvidia.com/content/cuda-pro-tip-kepler-texture-objects-improve-performance-and-flexibility
https://developer.nvidia.com/content/cuda-pro-tip-kepler-texture-objects-improve-performance-and-flexibility
http://on-demand.gputechconf.com/gtc/2013/webinar/gtc-express-gpudirect-rdma.pdf
http://on-demand.gputechconf.com/gtc/2013/webinar/gtc-express-gpudirect-rdma.pdf
www.microway.com

