

Rogue Wave Software
5500 Flatiron Parkway,
Suite 200
Boulder, CO 80301, USA
www.rougewave.com

TotalView Brochure
Comprehensive tool for verifying, debugging, and optimizing
complex applications

A White Paper by Rogue Wave Software.

http://www.rougewave.com/

TotalView Brochure

Comprehensive tool for verifying, debugging, and optimizing
complex applications

by Rogue Wave Software

© 2013 by Rogue Wave Software. All Rights Reserved

Original Publication – April 2012

Printed in the United States of America

Trademark Information

The Rogue Wave Software name, logo, and TotalView are registered trademarks of Rogue Wave Software, Inc. or its
subsidiaries in the US and other countries. MemoryScape and ReplayEngine are trademarks of Rogue Wave Software,
Inc. or its subsidiaries. All other company, product, or brand names are the property of their respective owners.

IMPORTANT NOTICE: The information contained in this document is subject to change without notice. Rogue Wave
Software, Inc. makes no warranty of any kind with regards to this material, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. Rogue Wave Software, Inc. shall not be liable for errors
contained herein or for incidental, consequential, or other indirect damages in connection with the furnishing,
performance, or use of this material.

TABLE OF CONTENTS

TotalView .. 4

High Productivity ... 4

Advanced Features ... 4

Remote Access .. 5

Batch Debugging ... 5

Parallel Debugging .. 6

Advanced Memory Debugging ... 6

Memory Debugging Architecture ... 7

Memory Debugging Features ... 7

Reverse Debugging ... 8

Architecture .. 8

Recording Program Execution .. 8

Deterministic Replay ... 8

Implications for Debugging ... 8

Usage Models.. 9

Graphical User Interface ... 10

Command Line Interface... 11

Debugging Heterogeneous Architectures .. 11

NVIDIA® GP-GPU Accelerated CUDATM and OpenACC® Debugging 11

Intel® Xeon PhiTM Debugging ... 12

Putting It Together .. 12

About Rogue Wave Software .. 12

 4 www.roguewave.com

TotalView

TotalView is a source code debugger for scientists and engineers troubleshooting complex, multi-
threaded, or multi-process programs. It simplifies and shortens the troubleshooting process necessary
to understand bugs and ultimately resolves defects in desktop applications, programs running on
servers, and scientific simulations running on clusters. Offering extreme scalability, TotalView features
memory debugging, programmability, powerful visualization and analytical capabilities, and support for
a wide range of platforms.

TotalView can be used on x86 and x86-64 Linux laptops, workstations, or servers. It can also be used on
Apple Mac laptops, workstations or servers as well as AIX, HP-UX and Oracle Solaris servers. In addition
to workstations and servers it also supports a wide variety of computational clusters. These include
clusters that combine x86 or x86-64 Linux systems with interconnects like Ethernet, gigabit Ethernet, or
Infiniband. TotalView also works on specialized HPC systems such as the Cray X2, XT and XE lines, IBM
Blue Gene/L, Blue Gene/P, and NEC SX systems. It supports computational accelerators like the Cell and
the NVIDIA Tesla and Fermi.

TotalView supports debugging applications written in C, C++, Fortran 77, Fortran 90, and UPC, and is
compatible with a number of different compiler families including the GCC compiler collection,
Pathscale compilers, PGI C/C++ and Fortran compilers, and the Intel compiler family. It also supports
applications that make use of MPI, UPC, OpenMP, and hybrid MPI/OpenMP architectures.

High Productivity
TotalView is first and foremost a graphical debugger. It presents the program, its current data and state
of execution, and a series of simple-to-use buttons and menu items.

Your code is represented front and center in the TotalView process window, with the function call stack
and local variables displayed in nearby areas of the window. A small set of important operations like
stepping are done via prominently placed buttons; more rarely used features are available through the
menus. Looking at a function is as simple as clicking on that function name in the function call stack
pane. You can set a breakpoint with a single click on the relevant line number. The windows
representing code and data are all highly interactive. You can use the mouse to dive on any function,
variable, pointer, element, thread, process, or breakpoint for more detail. Forward and back navigation
(similar to a web browser interface) is available whenever you are diving on a function or variable.

Between the basic interface and the dive concept, the learning curve for using TotalView’s more
sophisticated capabilities is quite gentle. Many debugging sessions require only TotalView’s easiest-to-
locate features. However, when troubleshooting involves a more nuanced inspection of, or control over,
an application, you can call on TotalView’s rich set of advanced features.

Advanced Features
A smaller number of troubleshooting situations require the analysis of large and/or complex data sets.
TotalView provides a great degree of flexibility in the representation of data; you can easily
navigate complex structures that contain references and types whose interpretation
depends on other parts of the program. Often you can recognize correct and incorrect
patterns within a program when you see its data. You can call up a graphical representation
of program data (surface plots of arrays), program state (program call graph),

 5 www.roguewave.com

communication state (MPI message queues), and memory management state (heap statistics and heap
graphical display) to look for these patterns. TotalView can also help you flag erroneous patterns by
providing statistical analysis of program data, detecting cycles within communication patterns, and
highlighting leaked blocks of memory.

Sometimes the sheer volume of data can be overwhelming; TotalView provides coping mechanisms. It
can display sliced and filtered portions of very large array type data sets; allow you to subset attach to
very large parallel applications, or filter data displayed on the message queue and program call graphs;
and it provides a Boolean filtering mechanism on heap memory data (see below). If the problem relates
to the way data changes as the program executes, TotalView allows you to set watchpoints on any
memory location. These watchpoints are somewhat like breakpoints that are triggered when the
memory value at the location changes. As a more advanced technique, watchpoints can be set to trigger
only on specific conditions. TotalView highlights recently changed values when displaying program data.

For "racy" or other more difficult bugs you may need to take a more active role in steering the
application in order to reproduce an otherwise rare situation, input data or sequence of concurrent
operations. In these cases, you can leverage an unparalleled degree of process control: inject data
directly by adjusting the value of variables or registers; use scripting, memory painting and hoarding; call
functions and C++ methods; reset the program counter; and patch the program on the fly without
recompilation. All of these let you concentrate on the code, confident of your ability to reproduce even
the most obscure scenario.

TotalView provides a fully programmable and scriptable command line interface, enabling you to
systematically look at data and/or control program execution. Two of the unique features of the
TotalView command line interface are that it remains asynchronous, and that individual commands can
be directed at arbitrary sets of threads and/or processes. This means that you can request the value of a
variable as it exists in hundreds or thousands of processes with a single command. The output of such a
command can easily be captured, parsed, and analyzed in place in the debugging script. The TotalView
command line interface is asynchronous in that one or more processes can be running while the
interface is accepting input, and commands that continue one or more process return right away.

Remote Access
Many scientists and software developers who could benefit from TotalView are using unique
computational resources that are centrally located at an HPC center, logging in over a long-distance
network connection. They do most of their work through the command line and may or may not even
know how to set up a graphical connection. TotalView includes a Remote Display Client that greatly
simplifies setting up and accelerates the display of a full interactive graphical user interface over slow
long-distance connections.

Batch Debugging
Another reality of the HPC work environment is the requirement to use a batch resource management
system. In this case, users are often very comfortable using a command line interface to set up a job,
submit it to the batch queue, and receive and analyze results generated by the job. TotalView includes
TVScript for batch queue workflows and environments.

 6 www.roguewave.com

Parallel Debugging
TotalView provides a powerful environment for debugging parallel programs in that it allows you to
easily control and inspect applications composed of either a single process, or sets of thousands of
processes running across the many compute nodes of a supercomputer.

TotalView's user interface is built around the idea that you typically want to focus on a single process
from among the many that make up a parallel application. At any point you may wish to work with this
process alone, with this process and related other processes, or with all the processes that make up the
job. Alternatively, you may want to switch your focus to another process entirely.

The root window provides one way to navigate the many processes that make up a job. It provides a list
of all of the processes (and optionally some or all of the threads) to which the job or jobs may be
attached. The list can be customized in several ways; the default identifies all the processes in
MPI_COMM_WORLD rank order. For very large jobs, it is sometimes convenient to sort the list by
current state (running, stopped, at a breakpoint, etc.). These states can be rolled-up for easier viewing.

TotalView also displays processes graphically on the processes tab of each process window, making it
easier to understand and use process groups. Process groups can be used to query or control a program.
A group is automatically defined for any set of processes that are "in lockstep" with the current process,
making it easy to work with a set of closely related processes. Groups can also be defined based on
other characteristics: MPI communicator membership, process state at a given time, or any other
arbitrary grouping based on your knowledge of the program structure. Data inspection, evaluation and
process control commands can operate on any of these groups. Breakpoints, watchpoints, and barrier
objects can operate on single threads or processes, on groups of processes, or entire parallel
applications.

Graphical representations of complex data are often easier for scientists and developers to review and
analyze. When working with many processes, TotalView provides two important graphical
representations: the call graph provides a compact view of the current point of execution for the many
processes in a large parallel job; the message queue graph provides a compact view of message
communication between processes in a large parallel job.

Finally, TotalView offers subset attach, a critical feature for work at extreme scales. TotalView does not
need to be attached to an entire parallel job: it can attach to any arbitrary subset. Any processes that
are not attached in the debugger will run freely and participate in the parallel program. This subset of
attached processes can change over time as you explore your parallel application.

Advanced Memory Debugging

TotalView implements an integrated memory debugging feature called MemoryScape, to provide vital
information about the state of program heap memory. It reports some errors directly as they occur,
provides graphical and interactive maps of the heap memory within individual processes,
and makes information such as the set of leaked blocks easy to obtain. Designed to be used
with parallel applications, it provides detailed information about individual processes as
well as high-level memory usage statistics across all the processes that make up large
parallel applications.

 7 www.roguewave.com

MemoryScape is lightweight and has a very low runtime performance cost. It can be used separately
from TotalView and is available for purchase separately.

Memory Debugging Architecture
MemoryScape uses a technique called interposition, inserting a library, the Heap Interposition Agent
(HIA), between application code and the malloc() subsystem. This library defines functions for each of
the memory allocation API functions, which are initially called by the program whenever it allocates,
reallocates, or frees a block of memory.

Interposition differs from simply replacing the malloc library with a debug malloc in that the
interposition library does not actually fulfill any of the operations itself; it arranges for the program's
malloc API function calls to be forwarded to the underlying heap manager that would have been called
in the absence of the HIA. The effect of interposing with the HIA is that the program behaves the same
way as it would without the HIA, but the HIA intercepts all the memory calls and performs bookkeeping
and sanity checks before and after the underlying function is called.

Memory Debugging Features
MemoryScape provides a range of heap status reports, the most popular of which is the heap graphical
display. At any point where a process has been stopped, the heap graphical display paints a picture of
the heap memory in the selected process. Each current heap memory allocation is represented by a
green bar extending across the range of addresses that are part of the allocation. The view is interactive:
selecting a block highlights related allocations and presents detailed information about the selected
block and the full set of related blocks. The display can be filtered to dim allocations based on their
properties (such as their size or what shared object they were allocated in).

Overall memory usage statistics are also provided in line, bar and pie charts for one, all, or an arbitrary
subset of the processes that make up the debugging session.

Leak detection can be done at any point in program execution. Most leaks occur when the program
ceases using a block of memory without calling free. Although it is difficult to define "ceasing to use,"
the debugger is able to detect leaks by checking whether the program retains a reference to specific
memory locations. Leak detection on a process identifies the specific allocations for which there are no
locatable references in the program. A block of memory for which the program stores no reference is
highly unlikely to subsequently be subject to a free() call and is extremely likely to be a leak.

If you suspect a "wild pointer" or array bounds violation is corrupting memory, you can use heap guard
blocks to track down the problem. The HIA can place a "reserved region" with known data values before
and/or after individual heap memory allocations, and a change in these data values indicates that the
program is writing where it should not be. The Red Zones feature, which protects a page of memory
around the blocks that you want to check, directly detects writes into these protected pages.

 8 www.roguewave.com

For memory debugging of very large scale jobs, a reduced-overhead alternative can be used more
naturally with batch environments. This mode, referred to as lightweight memory core file debugging,
allows you to prepare your application and run it without the debugger attached. When memory events
occur, or at the end of the job run, the HIA can generate a file of information about the error or the
status of the heap. The file, like a traditional corefile, can be opened in TotalView to review the
information.

Reverse Debugging

TotalView on Linux includes the ReplayEngine reverse debugging feature which radically simplifies
troubleshooting and debugging by letting you move backward through code execution.

Architecture
The reverse debugging capability is predicated on the ability to record and deterministically replay the
execution of each individual process in the program. The debugger arranges for each target process to
load an instrumentation library that manages the process of recording and replaying execution history.
For the most part, the debugger operates on each process as it would otherwise do to suspend
execution, read and write registers and memory, set breakpoints, and resume the process or individual
threads. The debugger also has the ability to instruct the process to "go to" any previous point in
execution history. The instrumentation library transparently takes any action necessary to put the
process into the right state so that the debugger can then query registers and memory from that point
in recorded history.

Recording Program Execution
One of the challenges tackled by the instrumentation library is recording enough of the program
execution to allow the program to be re-executed along exactly the same trajectory over and over again.
This includes inputs such as data from external files, data transmitted over the network, the return value
of system calls, and the sequence of thread execution. TotalView does this very efficiently both in terms
of the time that it takes to record the information and in terms of the volume of data recorded.

Deterministic Replay
Given its ability to record program execution, the instrumentation library can reproduce any point on
the trajectory of the program by starting from a previous known state and replaying the program
forward in a controlled fashion. During this replay the simulated process reads data and makes system
calls that all return the values that were recorded during the execution of the real process. The
instrumentation library manages a collection of known states in such a way that most backwards
stepping operations can be done with little delay. However, there may also be points in execution
history that will take more than a few seconds to reach, especially in very long-running processes.

Implications for Debugging
The architecture mentioned here has some implications that are worth reviewing. The instrumentation
library needs to make the execution trajectory deterministic in programs that have multiple
threads per process. It does this by ensuring that only one thread at a time runs, which may
significantly impact the performance of some programs.

 9 www.roguewave.com

Recording process behavior incurs some significant overhead, which will vary from process to process
depending on individual characteristics. This overhead comes in the form of execution time and memory
usage.

Under some circumstances, the process being debugged may need to write output to a file. During the
replay of recorded execution history some of the operations that TotalView users are accustomed to
using (such as setting program variables, "set pc," and full asynchronous thread control) may not be
available because their use would cause the simulated execution to depart from the recorded trajectory.

Large computational cluster resources are almost always run in a mode where jobs are managed and
accounted for using a resource management system. Looking at troubleshooting and debugging as a
process, TotalView seeks to eliminate and shorten the process cycles by allowing developers to work
backwards from failure to error. However, this improvement involves a trade off between many shorter
runs and a single longer run. For reverse debugging to be adopted by users of large managed clusters,
the rules governing access may need to allow for longer running single jobs in the portion of the
machine set aside for interactive debugging.

Usage Models
There are at least four different operations that will be important when you are working backwards
through your program.

Backwards Stepping

The simplest and most frequently used mechanism for inspecting the historical state of the program is
to step backwards line-by-line through the program. This is an analog of stepping in the forward
direction and the same navigation rules apply. If you are stepping through a loop construct, back
stepping from the top line will take you to the conditional, and then back into the bottom of the loop.

As with forward stepping, there are several slight variations on the stepping theme for backwards
stepping. The "back next" operation takes the target program backwards over a single executable line of
code at the same scope level, even if it contains one or more function calls. The "back step" operation
takes the target program backwards over a line of code -- unless that line of code contains one or more
functions, in which case it takes the target program to the previously executed line of code even if that
line occurs in one of the called subroutines. In either of the previous cases, backwards stepping from the
first line in a function will take the program to the point in time before the function was called. When
working in a function, "back out" will take the program to the line just before the current function was
called.

Together, these operations give you easy access to the recent past of the program's execution. They can
be coupled with forward stepping commands so you can step back and forth over a single line many
times, if that is what is needed to understand what is going on. This should make unfamiliar programs
much easier to work with since any nuances of the program's behavior that are missed at first can be
picked up on further examination.

Reverse “Run To”

While you will often step line-by-line through interesting sections of programs, there are
other sections of the program that are simply not relevant, so you may need a way to skip
back over longer stretches of the execution history. This is provided by the "run back to"

 10 www.roguewave.com

operation that lets you examine the state of the program at the most recent time the program was at
any given line. The selected line might be a line in the same function, a line in a calling function, a line in
any other function that happened to have been called previously in the program, or a line in main. This
is a direct analog of the TotalView "run to" command, which works the same way in the forward
direction.

This ability is particularly effective when the function being examined contains one or more loop
constructs, and instead of stepping around the loop many times, you can simply jump to before the loop
started. You can also return to an earlier program phase by selecting lines in the top level program
structure that represent these phases.

Backwards Continue

When you have several possible breakpoints set, the “continue” button runs the program forward to the
next breakpoint (or watchpoint). “Backwards continue” provides the reverse analog of this operation.
With it, the debugger notes the current point in execution history and searches back through recorded
execution history in the context of all the currently active breakpoints and watchpoints to find the one
that occurs closest to the current point. It is as if the program actually ran backwards and stopped at the
first breakpoint or watchpoint that was triggered.

Using ‘backwards continue’ is a very useful strategy in cases where there is a gulf between the error and
failure, marked by the presence of bad or unexpected data in a variable. The failure is the result of the
program attempting to compute based on this bad data, whose source is often highly mysterious. The
usual suspects include buffer overruns, racy writes, or writes to invalid pointers, and tracking these
down without reverse debugging is a chore. With TotalView, working across this gulf is brilliantly easy:
just set a watchpoint on the memory address that contains the bogus data and use “backwards
continue.” Watchpoints trigger when the debugger detects changing data at that location, so the
program will stop at the instruction before the one that set the bogus value. You can step forwards and
backwards and watch it go from a good value to a bad one, and more importantly look at the context of
the change.

Random Access

In some cases there is no specific line defining the point in the execution history you want to examine.
TotalView gives you the ability to specify a time and ask to inspect the program at that point. This is the
backwards analog to halting a program after a specified time has passed.

Since TotalView provides both a Graphical User Interface (GUI) and a Command Line Interface (CLI),
reverse debugging can be driven by either interface.

Graphical User Interface
Most users use the GUI. You enable reverse debugging on a specific process by selecting a checkbox in
the TotalView new program dialog box. No further action is required – the debugger takes care of
starting the program in such a way that the instrumentation library is loaded.

 11 www.roguewave.com

The TotalView process window contains a series of prominently placed buttons for the stepping
commands. The backwards stepping commands are next to the forward stepping commands. Since they
are such close analogs of the forward stepping commands, you can figure them out with just a little
experimentation. The "run back to" command, like the forward debugging "run to" command requires
you to select a line in the program before it is available.

How do you return to record mode after examining the historical state? You can either forward step out
of history or use the "return to live" button on the process window toolbar.

Command Line Interface
The Command Line Interface (CLI) for TotalView, best used to script, extend or programmatically drive
the debugger through a precise series of operations, has been extended to include reverse debugging
commands. For example, the dstep command includes a –back flag that allows it to be used in the
reverse direction.

The direct access to history, described above, is currently available only in the CLI. In that context a
query command provides a numeric "time-like" measure of the program’s location along the process's
execution trajectory. The "go to time X" command allows you to randomly access that execution history.

Debugging Heterogeneous Architectures

TotalView supports debugging applications utilizing NVIDIA GP-GPU accelerated CUDA and OpenACC, as
well as Intel Xeon Phi coprocessors.

NVIDIA® GP-GPU Accelerated CUDATM and OpenACC® Debugging
TotalView on Linux includes visibility into, and control over CUDA and OpenACC-based NVidia
accelerator debugging. The graphical presentation makes it easier for you as you step through either
host code or CUDA kernels to diagnose problems in how they are executing.

When debugging code that contains CUDA APIs, you can move between the host and device code in the
same session. CUDA specific features supported in TotalView include the following:

 Linux and GPU device thread visibility

 Full visibility to the hierarchical device, block, and thread memory

 Navigating device threads by logical and device coordinates

 CUDA function calls, host pinned memory regions and CUDA contexts

 Handling CUDA functions inline and on the stack

 Command line interface (CLI) commands for CUDA functions

 Applications that use multiple NVIDIA devices at the same time

 MPI applications on CUDA-accelerated clusters

 Unified Virtual Addressing and GPUDirect

 CUDA C++ and inline PTX

 Reporting memory errors and handling CUDA exceptions

Another unique feature for understanding CUDA applications is the device status window
which combines information about the available CUDA hardware and information about
how the logical tasks that are part of the program are being mapped to that hardware.

 12 www.roguewave.com

Intel® Xeon PhiTM Debugging
The support in TotalView for the Intel Xeon Phi can be used to debug applications that are either
compiled to run directly on the coprocessor or to run on the host while offloading specific tasks or
computations to the coprocessor.

TotalView has the following Intel Xeon Phi debugging capabilities:

 Full asynchronous thread control on both the host and Intel Xeon Phi coprocessor

 Simultaneously view what is happening in both the host and offload processes

 Certain breakpoints are shared across the host and coprocessor code

 Support for clusters and multi-device configurations

 Support for launching MPI and hybrid MPI + OpenMP applications natively into one or many
Intel Xeon Phi coprocessors

 Support for debugging native Intel Xeon Phi applications launched manually on the coprocessor

 Support for debugging host side applications using the Intel Language Extensions for Offloading
(LEO)

Putting It Together

TotalView provides the most comprehensive tool available for verifying and debugging complex
applications. It includes a unique combination of capabilities to pinpoint and fix hard to reproduce bugs,
memory leaks and race conditions.

Developing parallel, data-intensive applications is hard. We make it easier.

About Rogue Wave Software

Rogue Wave Software, Inc. is the largest independent provider of cross-platform software development
tools and embedded components for the next generation of HPC applications. Rogue Wave marries High
Performance Computing with High Productivity Computing to enable developers to harness the power
of parallel applications and multicore computing. Rogue Wave products reduce the complexity of
prototyping, developing, debugging, and optimizing multi-processor and data-intensive applications.
Rogue Wave customers are industry leaders in the Global 2000, ISVs, OEMs, government laboratories
and research institutions that leverage computationally-complex and data-intensive applications to
enable innovation and outperform competitors. For more information, visit
http://www.roguewave.com.

http://www.roguewave.com/products/
http://www.roguewave.com/

